Friedreich's ataxia 1980. An overview of the physiopathology.
نویسنده
چکیده
Phase three of the Quebec Cooperative Study of Friedreich's Ataxia was devoted to an understanding of the physiopathology of individual symptoms on the basis of previously discovered biochemical leads. The present paper attempts to pull these results together by presenting, as a hypothesis, a unifying scheme of possible interactions and relationships. The central core of this hypothesis is the demonstration in Friedreich's ataxia of a state of mitochondrial energy deprivation. This is indirectly responsible for such associated and important symptoms as muscle weakness, dying-back neuropathy, scoliosis and hypertrophic cardiomyopathy. Secondarily, and possibly as an independent but linked-event, the entry of glucose into cells and pyruvate oxidation, are slowed down, favoring the development of diabetes. As a consequence, tissue concentrations of glutamic acid and aspartic acid are decreased, particularly in more vulnerable areas such as the cerebellum, brain stem and dorsal root ganglia. This tissue deficiency in putative excitatory neurotransmitters is directly responsible for the symptom of ataxia. This conclusion is reinforced by the correction of the ataxia in experimental animals, by the intraventricular injection of the same amino acids, and not by the injection of other stimulants of motricity. The observed mitochondrial energy deprivation could be the metabolic consequence of major changes in the linoleic acid (18.2) composition of inner mitochondrial membrane phospholipids, such as cardiolipin. Such decreases in membrane 18:2 could be the result of interference with the normal incorporation of this fatty acid to lipoproteins and/or cell membranes. It is at this level that the search for the specific enzyme defect in Friedreich's ataxia is continuing.
منابع مشابه
Lipids and lipoproteins in Friedreich's ataxia.
Friedreich's ataxia is an autosomal recessively inherited disease affecting the nervous system with a high incidence of heart involvement. Abnormalities of lipid metabolism are known to be associated with several progressive ataxic conditions. In this study of 46 Friedreich's ataxia patients, serum lipids, fatty acids and lipoproteins were assayed and compared with some earlier findings on Frie...
متن کاملFriedreich's ataxia in northern Italy: I. Clinical, neurophysiological and in vivo biochemical studies.
Eighteen patients with the presumptive diagnosis of Friedreich's ataxia were studied. Clinical, neurophysiological and biochemical data were concordant in 14 patients and led to the diagnosis of typical Friedreich's ataxia in this group of patients. The remaining 4 patients differed from the typical patients in several respects, but mainly in the cardiological findings. It is concluded that no ...
متن کاملFriedreich's ataxia and oral glucose tolerance: I. The effect of ingested glucose on serum glucose and insulin values in homozygotes, obligate heterozygotes and potential carriers of the Friedreich's ataxia gene.
Glucose tolerance and insulin release were evaluated in 16 families with Friedrich's ataxia. Impaired glucose tolerance differed in incidence according to the method of evaluation, but was increased in number in parents and siblings of Friedreich's cases. Insulin output was not quantitatively different from normal, although the insulin peak was often delayed. This finding, in association with i...
متن کاملNeurodegeneration in Friedreich's Ataxia: From Defective Frataxin to Oxidative Stress
Friedreich's ataxia is the most common inherited autosomal recessive ataxia and is characterized by progressive degeneration of the peripheral and central nervous systems and cardiomyopathy. This disease is caused by the silencing of the FXN gene and reduced levels of the encoded protein, frataxin. Frataxin is a mitochondrial protein that functions primarily in iron-sulfur cluster synthesis. Th...
متن کاملNovel Missense Mitochondrial ND4L Gene Mutations in Friedreich's Ataxia
Objective(s) The mitochondrial defects in Friedreich's ataxia have been reported in many researches. Mitochondrial DNA is one of the candidates for defects in mitochondrion, and complex I is the first and one of the largest catalytic complexes of oxidative phosphorylation (OXPHOS) system. Materials and Methods We searched the mitochondrial ND4L gene for mutations by TTGE and sequencing on 30...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- The Canadian journal of neurological sciences. Le journal canadien des sciences neurologiques
دوره 7 4 شماره
صفحات -
تاریخ انتشار 1980